

注意! 先看! 变送器测量的功率为有功功率,这个与直流电中的功率是不同的,并不是简单的电流和电压的乘积,它还与功率因数有关,请不要以此来验证或者怀疑功率的正确性!请悉知!!!

一、 功能说明

JM101 是一款互感器隔离的高精度多功能交流变送器,可实时测量交流电流、电压、有功功率、累计电量、频率、功率因数等参数,提供标准通信接口(RS485 异步串口),可选的标准协议(Modbus 协议)及自定义协议。其中电流和电压的变送精度可达 0.2 级的超高精度。

二、 变送器技术指标

工作温度: -40℃ ~ 85℃; 供电电压: 直流 6V~24V; 工作电流: <30mA

最大测量电压: AC 400V;

最大测量电流: □30A □60A □100A

变送精度: 电流及电压 0.2 级,有功功率及电量 0.5 级;

通信接口: RS485 串行接口;

通信协议: Modbus-RTU 或自定义简易协议智能识别;

三、 接口说明

变送器通过互感器将测量电源和工作电源隔离,变送器供必须采用 6~24V 直流电源供电,最高不得超过 26V。通信接口采用 RS485 异步串行接口。

接线端子说明:

- 1号端子:RS485-A
- 3 号端子:RS485-B
- 4号端子:供电电压输入 6~24V 正极
- 6号端子: 供电电压输入 6~24V 负极
- 10 号端子:交流待测电压输入
- 12 号端子: 交流待测电压输入 电流测量需要穿过变送器的穿线孔。

四、 通讯端口说明

通讯端口为 RS485 标准电平的 Uart(异步串行) 接口。

数据位:8位,校验位:无,停止位:1位,波特率:共支持6种波特率,在 Modbus 寄存器中以编号形式给出。对应关系如下: 1:4800,2:9600(默认),3:19200,4:38400,5:57600,6:115200。例如需要修改波特率为9600,只需要向波特率寄存器写入2即可。

五、 通讯协议支持说明

JM101 支持自定义简易协议和 Modbus 双协议自动识别,无需软件或硬件设置。自定义简易协议详见章节:

自定义简易协议说明(使用 Modbus 协议的可跳过), Modbus 协议详见章节: Modbus-RTU 从机协议说明 (使用自定义简易协议的可跳过)。

六、 调试指令

JM101 提供一条调试指令,方便调试使用。通过串口向 JM101 发送字符串">>GetVal"(不包含引号), JM101 收到指令后会以字符串形式返回当前的测量值。由于是以明文形式显示,可很大程度上方便调试。返回的字符串格式如下:

Vrms: 0.00000V | Irms: 0.00000A | P: 0.0000W | PF: 0.00000 | F: 0.0000Hz | W: 0.0000KW*H |

七、 自定义简易协议说明(使用 Modbus 协议的可跳过)

0xF1

1、 帧格式说明

帧格式举例:

帧头(2 字节)	地址码(1字节)	功能码(1字节)	数据长度(2字节)	数据(长度不固定)	校验和(1字节)
帧头	、固定两个5	字节,地址 1	个字节可修	改,默认为 1	(同时使用
Modbus	的用户注意	,修改此地址	:会同时修改	Modbus 的地:	址),功能码
1 字节。	数据长度 2	字节,范围(OxFF~OxFFFF,	需要与实际数	ઇ据的长度
匹配。校	验和是从帧	〔头开始(包封	舌帧头)相加直	.到校验字节之	L 前,然后
取低8位	[得到的。				

0x00 0x01

- ◆ 互感器全隔离采集
- ♠ 0.2 级高精度
- ◆ 内置防雷保护
- ◆ 标准 RS485 接口
- ◆ 低功耗设计 15mA 工作电流
- ◆ 双通信协议智能识别
- ◆ 支持标准 Modbus-RTU 协议

Rev 1.2

2、 具体功能码说明

(1) 功能码列表:

١.	-1 ->1 100 h	マノ リルく・				
	功能码	0x01	0x02	0xF1	0xF2	0xF3
	功能	主要测量值请求	全部测量值请求	修改波特率	修改通讯地址	累积电量清零

(2) 主要测量值请求命令(0x01):

变送器接收到此命令将会返回当前测量的电压有效值、电流有效值、 有功功率。具体示例如下:

命令发送: 55 55 01 01 00 00 AC

命令返回: 55 55 01 01 00 0C 00 02 86 19 00 00 03 5A 00 02 2A 1C FE 返回帧解析:

55 55	帧头(两个字节)	固定为 0x55 0x55
01	通讯地址(1字节)	0~247 可修改,注意,这个地址也是 Modbus 地址,不使用 Modbus 协议则无需关心
01	功能码(1字节)	01 表示主要测量数据请求指令
00 OC	数据长度(2 字节)	数据部分的长度(此处表示 12 字节)
001C	数据部分(此处长度 12 字节)	具体含义见下方数据解析部分
FE	校验字节(1 字节)	从帧头开始(包括帧头)到校验字节之前的所有字节的数值之和取低 8 位

数据部分解析:

200 AH HL 2	200 AL BL 20 MI DI:					
返回数据	合成后数据	功能	说明			
00 02 96 10	0x00028619		无符号整型,高字节在前,单位毫伏(mV),除 1000 即可换算成伏(V)			
00 02 80 13	00 02 86 19 0000028619		此处: 00 02 86 19 mV = 165401mV = 165.401V			
00 00 02 5 4	0×00000354	电流有效值	无符号整型高字节在前,单位毫安(mA),除 1000 即可换算成安(A)			
00 00 03 5A 0x0000035A	(4 字节)	此处: 00 00 03 5A mA = 858 mA = 0.858 A				
00 02 24 16	0x00022A1C		无符号整型,高字节在前,单位毫瓦(mW),除 1000 即可换算成瓦(W)			
00 02 2A 1C	UXUUU22A1C	(4 字节)	此处: 00 02 2A 1C mW = 141852 mW = 141.852 W			

(3) 全部测量数据请求命令(0x02):

变送器接收到此命令将会返回当前测量的电压有效值、电流有效值、有功功率、功率因数、频率、累计电量。具体示例如下:

命令发送: 55 55 01 02 00 00 AD

命令返回: 55 55 01 02 00 18 00 02 78 D5 00 00 03 48 00 02 13 D6 00 00 27 10 00 00 C3 22 00 00 03 8B F4

帧解析:同上,略。数据部分解析(数据部分从帧中第7字节开始):

返回数据	合成后数据	功能	说明
00 02 78 D5	0x000278D5	电压有效值 (4 字节)	无符号整型,高字节在前.单位毫伏(mV),除 1000 即可换算成伏(V) 此处: 00 02 78 D5 = 162005 mV = 162.005V
00 00 03 48	0x00000348	电流有效值 (4 字节)	无符号整型,高字节在前.单位毫安(mA),除 1000 即可换算成安(A) 此处: 00 00 03 48 = 840 mA = 0.840 A
00 02 13 D6	0x000213D6	有功功率 (4 字节)	无符号整型,高字节在前,单位毫瓦(mW),除 1000 即可换算成瓦(W) 此处: 00 02 13 D6 = 136150 mW = 136.150 W
00 00 27 10	0x00002710	功率因数 (4 字节)	有符号整型,补码形式,高字节在前,实际功率因 PF =返回值÷10000 (-1≤PF≤1) 此处: 00 00 27 10=10000 则 PF=10000÷10000=1.0000
00 00 C3 22	0x0000C322	频率 (4 字节)	无符号整型,共 4 字节,高字节在前,实际频率 F=返回值÷1000HZ 此处: 00 00 C3 22 = 49954 则 F = 49954 ÷ 1000 = 49.954 Hz
00 00 03 8B	0x0000038B	累计电量 (4 字节)	无符号整型,高字节在前, 实际累积电量 W=返回值÷10 W·h = 返回值÷10000 kW·h 此处: 00 00 03 88=907 则 W = 907÷10 = 90.7 W·h = 0.0907 kW·h

(4) 波特率修改命令(0xF1)

通过此命令码发送波特率的代码可修改波特率,波特率对应码见章节:通讯端口说明。

☞ *示例1*:(修改为 9600)

命令发送: 55 55 01 F1 00 01 <u>02</u> 9F

55 55	01	F1	00 01	02	9F
帧头	地址	功能码	数据长度	数据 (波特率代码)	校验和

修改成功返回:55 55 01 F1 00 01 <u>02</u> 9F 修改失败返回:55 55 01 F1 00 01 <u>00</u> 9D

示例2: (修改为 115200)命令发送: 55 55 01 F1 00 01 <u>06</u> A3

 55
 55
 01
 F1
 00
 01
 06
 A3

 帧头
 地址
 功能码
 数据长度
 数据(波特率代码)
 校验和

修改成功返回: 55 55 01 F1 00 01 <u>06</u> A3 修改失败返回: 55 55 01 F1 00 01 00 9D

(5) 修改通讯地址命令(0xF2)

0x9D

0x00

示例 1: 修改通讯地址为 01,命令发送: 55 55 01 F2 00 01 <u>01</u> 9F

-J.p.j =	· 10100	11(FL)	XXC:00 00 01:12	- 00 0 <u>- 0-</u>	
55 55	01	F2	00 01	01	9F
帧头	地址 功能码 数据长序		数据长度	数据 (新地址码)	校验和

修改成功返回: 55 55 01 F2 00 01 <u>01</u> 9F 修改失败返回: 55 55 01 F2 00 01 00 9E

示例 2: 修改通讯地址为 02,命令发送: 55 55 01 F2 00 01 02 A0

55 55	01	F2	00 01	02	A0
帧头	地址	功能码	数据长度	数据 (新地址码)	校验和

修改成功返回: 55 55 01 F2 00 01 02 A0 修改失败返回: 55 55 01 F2 00 01 00 9E

(6) 累计电量清零命令(0xF3)

累计电量清零需要通过此命令码发送固定值 0x12,0x34 清零。成 功返回1,失败返回0

示例:命令发送: 55 55 01 F3 00 02 <u>12 34</u> E6

55 55	01	F3	00 02	12 34	E6
帧头	地址	功能码	数据长度	数据 (新地址码)	校验和

成功返回: 55 55 01 F3 00 01 01 A0 失败返回: 55 55 01 F3 00 01 00 9F

八、 Modbus-RTU 从机协议说明 (使用自定义简易协议的可跳过)

1、 Modbus 功能码说明:

功能码(十六进制)	功能码(10 进制)	功能说明	备注
0x03	3	读保持寄存器(读多个寄存器)	具有可读属性的寄存器均可用
0x06	6	写单个寄存器	具有可写属性的单个寄存器均可用
0x10	16	写多个寄存器	具有可写属性的寄存器均可用

2、 Modbus 寄存器列表:

寄存器功能	寄存器 十进制表 示	起始地址 十六进制表 示	寄存 器长 度	读写支持	操作码支持 (十进制表示)	范围	默认值
电压有效值	3000	0x0BB8	2	只读	03		
电流有效值	3002	0x0BBA	2	只读	03		
有功功率	3004	0x0BBC	2	只读	03		
功率因数	3006	0x0BBE	2	只读	03	1	
频率	3008	0x0BC0	2	只读	03	1	
累计电量	3010	0x0BC2	2	只读	03	ı	
波特率	3100	0x0C1C	1	读写	03/06/16	1~6	2
Modbus 地址	3105	0x0C21	1	读写	03/06/16	1~247	1
电量清零	3110	0x0C26	1	读写	03/06/16	1	

3、 寄存器说明:

电压有效值寄存器	无符号整型,两个寄存器长度,共 4 个字节,高字节在前,单位毫伏(mV),除 1000 即可换算成伏(V)
电流有效值寄存器	无符号整型, ,两个寄存器长度,共 4 个字节,高字节在前,单位毫安(mA),除 1000 即可换算成安(A)
有功功率寄存器	无符号整型, ,两个寄存器长度,共 4 个字节,高字节在前,单位毫瓦(mW),除 1000 即可换算成瓦(W)
功率因数寄存器	有符号整型,补码形式,,两个寄存器长度,共 4 个字节,高字节在前,实际功率因 PF = 返回值÷10000 (-1≤PF≤1)
频率寄存器	无符号整型,,两个寄存器长度,共4个字节,高字节在前, 实际频率 F=返回值÷1000HZ
累计电量寄存器	无符号整型,,两个寄存器长度,共4个字节,高字节在前,实际累积电量 W=返回值÷10 W·h = 返回值÷10000 kW·h
波特率寄存器	写入波特率的代码可修改波特率,波特率对应码见章节: 通讯端口说明
Modbus 地址寄存器	写入新的地址可修改该节点的地址,也可读取查询
电量清零寄存器	向该寄存器中写入固定值 0x1234 可清零累计电量

4、 寄存器读写示例

波特率寄存器: 十六位无符号整型 (1: 4800, 2:9600 (默认), 3:19200, 4:38400, 5:57600, 6:115200)。以波特率的编码表示, 可读 可写, 写操作成功后新的波特率立即生效并且掉电不会丢失。

☞ 波特率修改示例(修改为9600):

主机发送: 01 10 0C 1C 00 01 02 00 02 E9 CD

<u> </u>						
01	10	0C 1C	00 01	02	00 02	E9 CD
地址	功能码	寄存器地址	寄存器个数	写入的字节 数	数据 (波特率代码)	CRC16 校验
从和报回·01 10 0C 1C 00 01 C2 EE						

从机返回: 01 10 0C 1C 00 01 C3 5F

W. C.					
01	10	0C 1C	00 01	E9 CD	
地址	功能码	寄存器地址	寄存器个数	CRC16 校验	

Modbus 地址寄存器: 范围 1~247, 248~255 保留(不要使用), 掉电 不丢失。

Modbus 地址修改示例(修改地址为 1)

主机发送:01 10 0C 21 00 01 02 00 01 AD 21

	, to the second					
01	10	0C 21	00 01	02	00 01	AD 21
地址	功能码	寄存器地址	寄存器个 数	写入的字节 数	数据(Modbus 地址)	CRC16 校验

从机返回:01 10 0C 21 00 01 52 93

//代/L/运 回 . U1 10 UC 21 U0 U1 J2 J3								
01	10	0C 21	00 01	52 93				
Hhhh	计能和	宏方 婴栅址	客 左哭个粉	CPC16 校验				

勘误:

文档版本说明:

V1.0 初始版本; V1.1 型号修改 V1.2 修改接线端子定义说明。